
Scattering by a toroidal coil

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 5293

(http://iopscience.iop.org/0305-4470/36/19/307)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 02/06/2010 at 15:28

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 5293–5304 PII: S0305-4470(03)58744-3

Scattering by a toroidal coil

Ph Roux1

Department of Mathematics, University of Rennes, Campus Beaulieu, 35042, Rennes, France

E-mail: Philippe.Roux@univ-rennes1.fr

Received 22 January 2003, in final form 31 March 2003
Published 29 April 2003
Online at stacks.iop.org/JPhysA/36/5293

Abstract
In this paper we consider the Schrödinger operator in R

3 with a long-range
magnetic potential associated with a magnetic field supported inside a torus
T. Using the scheme of smooth perturbations we construct stationary modified
wave operators and the corresponding scattering matrix S(λ). We prove that
the essential spectrum of S(λ) is an interval of the unit circle depending only
on the magnetic flux φ across the section of T. Additionally we show that,
in contrast to the Aharonov–Bohm potential in R2, the total scattering cross-
section is always finite. We also conjecture that the case treated here is a typical
example in dimension 3.

PACS numbers: 03.65.Nk, 11.55.−m, 72.15.Nj
Mathematics Subject Classification: 35P25, 81U05, 81U20

1. Introduction

Let A(x) be a magnetic potential

A(x) = a(ϕx)

|x| eϕx
|x| � R > 0 (1.1)

where a ∈ C∞
0 (0, π) is a positive function of the colatitude of x = (x1, x2, x3)

ϕx = arccos

(
x3

|x|
)

∈ [0, π] (1.2)

and eϕx
denotes the basis vector of spherical coordinates

(
erx

, eϕx
, eθx

)
associated with the

point x

eϕx
= 1

|x|


 x1x3√
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2
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x2x3√
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Figure 1. The toroidal coil T.

Physically the potential (1.1) corresponds to a magnetic field B = curl A supported inside
a torus T obtained by revolution around the x3 axis (see figure 1). The function a in (1.1)
depends only on the section of T and the flux φ of B across any section of the torus

φ =
∫ π

0
a(ϕ) dϕ > 0. (1.4)

This situation is known, from the work of Aharonov and Bohm [AB59], to show a purely
quantum phenomenon: a compactly supported magnetic field can act on particles which
never cross its support. From the mathematical point of view, despite B as a finite
support, the potential A decays as |x|−1 at infinity and is of long-range nature. Thus one
expects the properties of the scattering process associated with the potential (1.1) to be
different from the case of short-range potentials.

Here we consider the Schrödinger operator

H = (D − A(x))2 D = −i∇x (1.5)

in L2(R3), and develop the scheme of smooth perturbations for the pair H,H0 = −�.
Although the usual wave operators exist (due to the transversal gauge condition 〈A(x), x〉 = 0,

for all x ∈ R3, see [LT87]) we prefer to work with modified wave operators of the Isozaki–
Kitada type:

W±(H,H0, J ) = s − lim
t→±∞ eitH J e−itH0 (1.6)

with stationary identifications J = J± depending on the sign of t, as in [Nic94, RY02b]. We
choose the operators J± as pseudo-differential operators (PDO) with symbols exp(i�±(x, ξ))

such that the effective perturbation T± = HJ± − J±H0 is short-range, that is the phase
function �± satisfies ∇x�±(x, ξ) = A(x). Thus the existence of wave operators (1.6) relies
only on the limiting absorption principle in contrast to [RY02b] where the radiation estimate
was needed. Since the identifications J± are ‘close’ to unitary operators, the wave operators
W±(H,H0, J±) are automatically isometric and complete, indeed, they coincide with the usual
wave operators W±(H,H0) = W±(H,H0, Id).
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The scattering operator, defined by S = W ∗
+ (H,H0)W−(H,H0), commutes with H0; so,

in the spectral representation of H0, it reduces to the multiplication by the operator-valued
function S(λ), called the scattering matrix (SM) which acts as an integral operator on the unit
sphere S

2 of R
3. Our study of the SM relies on its stationary representation

S(λ) = W(λ) − 2iπ	0(λ)(J ∗
+ T− − T ∗

+ R(λ + i0)T−)	∗
0(λ) (1.7)

where R(z) = (H − z)−1, and

W(λ) = 	0(λ)W+(H0,H0, J
∗
+ J−)	∗

0(λ) (1.8)

with 	0(λ) : L2(R3) −→ L2(S2) defined for u in the Schwarz class by

(	0(λ)u)(ω) =
√

λ

2(2π)3/2

∫
R3

ei
√

λ〈ω,x〉u(x) dx ω ∈ S
2 (1.9)

and 	∗
0(λ) is formally adjoint to 	0(λ). To justify the formula (1.7) we decompose it as a

sum of bounded operators. First, we calculate the term W(λ) and prove that it reduces to the
operator of multiplication by the function w defined on S2 by

w(ω) = exp

(
i
∫ ϕω

π−ϕω

a(ϕ) dϕ

)
ω ∈ S

2. (1.10)

Then we show that the remaining term, S(λ) −W(λ), is an integral operator on S2 with a C∞

kernel. Thus, we can make a spectral analysis of the SM. Since S(λ) is a compact perturbation
of W(λ), we calculate its essential spectrum, that is

σess(S(λ)) = {µ = exp(iν) ∈ C | ν ∈ [−φ, φ]} . (1.11)

In particular σess(S(λ)) depends only on the magnetic flux φ (1.4) of B across the section of
T. Now if we take as a definition of the differential scattering cross-section

diff(ω, ω0; λ) = λ−(d−1)/2

(2π)d−1
|s(ω, ω0; λ)|2 ω 	= ω0 (1.12)

with d = 3 and where ω0 (resp. ω) is the incoming (outgoing) direction, then the function
diff(ω, ω0; λ) belongs to C∞(S2 × S2 × R+). In particular the total scattering cross-section

tot(ω0; λ) =
∫

S2

diff(ω, ω0; λ) dω (1.13)

is finite for all incident directions ω0 ∈ S2.
This paper is organized as follows: in section 2 we construct stationary wave operators

and recover the basic results of scattering theory for potential (1.1); in section 3 we analyse
the structure of the SM and its spectral properties; finally, in section 4 we make some remarks
about this example and the two-dimensional Aharonov–Bohm effect, we also conjecture that
the situation described here is very general in the three-dimensional case.

2. Wave operators

In this section we construct time-independent modified wave operators, as in [Nic94, RY02b],
and recover basic results on long-range magnetic scattering in the transversal gauge [LT87].
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2.1. Construction of identifications

In the scheme of smooth perturbations the choice of identifications J = J± in (1.6) is
determined by the condition that the effective perturbation T± = HJ± − J±H0 be ‘short-
range’. If, as in [Yaf98], we search J± as a PDO with symbol j±(x, ξ) then the
function �±(x, ξ) = ei〈x,ξ〉j±(x, ξ) should be an approximate (i.e. up to short-range terms)
eigenfunction of H associated with the eigenvalue |ξ |2. Thus we set j±(x, ξ) = exp(i�±(x, ξ))

and compute

(H − |ξ |2)�±(x, ξ) = (2〈ξ,∇x�±(x, ξ) − A(x)〉 + |∇x�±(x, ξ) − A(x)|2
− i divx(∇x�±(x, ξ) − A(x)))�±(x, ξ). (2.1)

Taking only the principal (i.e. the first) term of (2.1), we obtain the eikonal equation for �±
〈ξ,∇x�±(x, ξ) − A(x)〉 = 0. (2.2)

As shown in [Yaf98], this equation admits solutions with decaying derivatives for large |x|
�±(x, ξ) = ∓

∫ ∞

0
〈A(x ± tξ) − A(±tξ), ξ〉 dt = ∓

∫ ∞

0
〈A(x ± tξ), ξ〉 dt .

Note that the second equality is a consequence of the transversal gauge condition 〈A(y), y〉 =
0, for all y ∈ R3. To simplify this expression we first make the change of variables t �→ s

defined by

s = s0 ± t|ξ | x = b + s0ω 〈b, ω〉 = 0 ω = ξ

|ξ |
which leads to the equation

�±(x, ξ) =
∫ s0

±∞
〈A(b + sω), ω〉 ds. (2.3)

Then, we rewrite this integral into spherical coordinates (see figure 1). Let

x(s) = b + sω u(s) =
√

(b1 + sω1)2 + (b2 + sω2)2

and ϕ(s) be the colatitude of x(s) (defined by (1.3)). Since

sin(ϕ(s)) = u(s)/|x(s)| cos(ϕ(s)) = (b3 + sω3)/|x(s)|
and taking into account that

|x(s)|2 = |b|2 + s2 |ω|2 = 1 〈x(s), ω〉 = s
d

ds
cos(ϕ(s)) = −sin(ϕ(s))

dϕ(s)

ds
we get

dϕ(s)

ds
= sb3 − ω3|b|2

|x(s)|2u(s)
.

On the other hand

〈eϕ(s), ω〉 = 1

|x(s)|u(s)
(x3(s)〈x(s), ω〉 − 〈(0, 0, |x(s)|2), ω〉)

= |x(s)|2ω3 − sx3(s)

|x(s)|u(s)
= sb3 − |b|2ω3

|x(s)|u(s)

which leads to

〈A(x(s)), ω〉 = a(ϕ(s))

|x(s)| 〈eϕ(s), ω〉

= a(ϕ(s))

|x(s)|
sb3 − |b|2ω3

|x(s)|u(s)
= a(ϕ(s))

dϕ(s)

ds
.
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Thus, we can make the change of variables s �→ ϕ(s) in (2.3) and, since ϕ(s0) = ϕx and
ϕ(±∞) = ϕ±ω = ϕ±ξ , we get

�±(x, ξ) =
∫ ϕx

ϕ±ξ

a(ϕ) dϕ |x| � R > 0 (2.4)

in particular, for |x| � R > 0,

∇x�±(x, ξ) = 1

|x|∂ϕx
�±(x, ξ)eϕx

= A(x). (2.5)

The stationary scheme developed below makes intensive use of symbolic calculus (see
[Tay81]), so we have to fix some notation on PDO. In the following we call Sm(µ) the set of
functions p ∈ C∞(R6) satisfying, for all multi-indices α and β, the estimates∣∣∂α

x ∂
β

ξ p(x, ξ)
∣∣ � Cα,β 〈x〉m−|α|〈ξ〉µ−|β|

and Sm = ∩µ∈ZSm(µ). We set P = Op (p(x, ξ)) = p(x,D) for the PDO with symbol
p ∈ Sm defined for u ∈ S(R3) by

(Pu)(x) =
∫

R3
ei〈x,ξ〉p(x, ξ)û(ξ)

dξ

(2π)3/2

where û denotes the Fourier transform of u

û(ξ) =
∫

R3

e−i〈x,ξ〉u(x)
dx

(2π)3/2
. (2.6)

With this notation an operator with symbol p ∈ Sm is bounded (compact) if m � 0 (m < 0).
Now we are able to define the identifications J±.

Lemma 2.1. Let us fix λ ∈ (0, +∞), r ∈ (0, λ/2), and let ψ, η ∈ C∞(R3, [0, 1]) be cut-off
functions satisfying:

(i) η(x) = 0 if |x| � R and η(x) = 1 if |x| � R + 1
(ii) ψ(ξ) = 1 if ‖ξ | − λ| � r and ψ(ξ) = 0 if ‖ξ | − λ| � 2r .

For any choice of functions η and ψ we set J± = Op (j±(x, ξ)) where

j±(x, ξ) = ei�±(x,ξ)η(x)ψ(ξ). (2.7)

Then j± ∈ S0 and J± is a bounded operator in L2(R3). Additionally, the symbol of the
effective perturbation T± = HJ± − J±H0 = Op (t±(x, ξ)) belongs to Sm for all m ∈ Z.

Proof. Since, by (2.4), �±(x, ξ) is a homogeneous function of x and ξ (for |x| � R) of
degree 0, it satisfies in the whole phase space the estimate∣∣∂α

x ∂
β

ξ �±(x, ξ)
∣∣ � Cα,β |x|−|α||ξ |−|β| ∀α, β ∈ N

3 |x| � R.

Thus taking into account the definition of cut-off functions η and ψ we get that j± ∈ S0 and
J± is bounded by the Calderon–Vaillancourt theorem. Now we calculate the symbol of the
effective perturbation

t±(x, ξ) = e−i〈x,ξ〉(H − |ξ |2) ei〈x,ξ〉j±(x, ξ).

Using (2.1), (2.7), and that ∇x�±(x, ξ) = A(x), by (2.5), we get

t±(x, ξ) = ei�±(x,ξ) (−2i〈ξ,∇xη(x)〉 − �xη(x))ψ(ξ).

Thus t± has a compact support in x and ξ and belongs to Sm for all m ∈ Z. �
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2.2. Existence and completeness of W±

Our proof of the existence and asymptotic completeness of modified wave operators (1.6)
is based on the scheme of smooth perturbations. Then it relies on the well-known limiting
absorption principle:

Theorem 2.1 (Limiting absorption principle). Let H be the operator (1.5) with potential
(1.1) and 〈x〉 = (1 + |x|2)1/2. Then, for all bounded interval � ⊂ (0,∞), disjoint from 0,
the operator function 〈x〉−sR(z)n〈x〉−s , s > n − 1/2, is (Hölder-) continuous in norm in the
region Re(z) ∈ �,± Im(z) ∈ (0, 1] and

sup
Re z∈�

1�| Im z|>0

‖〈x〉−sR(z)n〈x〉−s‖ � c ∀s > n − 1/2. (2.8)

In particular, the spectrum of H in � is absolutely continuous and the operators 〈x〉−s , s > 1/2
are H-smooth on � (in the sense of Kato).

This result can easily be derived from the Mourre commutator method [Jen85] and the
absence of positive eigenvalues for the operator (1.5) [IU71]. Now, since t± is short-range in
the whole space, our proof of existence and completeness of wave operators relies only on the
theorem 2.2 in contrast to [RY02b] where the radiation estimate was also needed.

Proposition 2.3. Let E and E0 be, respectively, the spectral measures of H and H0, and J± be
constructed as under the assumptions (i) and (ii) of lemma 2.1. Set � = (λ − r, λ + r) then
the wave operators W±(H,H0, J±) and W±(H0,H, J ∗

±) exist, are isometric on, respectively,
E0(�) and E(�) and are adjoint one to the other. Additionally, asymptotic completeness
holds for the triple (H,H0, J±), that is

Ran(W±(H,H0, J±)E0(�)) = Ran(E(�))

Ran(W±(H0,H, J ∗
±)E(�)) = Ran(E0(�)).

Proof. Since the operators 〈x〉−s are H and H0-smooth for all s > 1/2, the effective
perturbation admits a decomposition into a product of smooth perturbations

T± = 〈x〉−1(〈x〉T±〈x〉)〈x〉−1 (2.9)

because the PDO 〈x〉T±〈x〉 belongs to Sm for all m ∈ Z and so is a bounded operator.
This is sufficient to prove the existence of W±(H,H0, J±) and W±(H0,H, J ∗

±) which are
obviously adjoint one to the other. Now, by the chain rule, isometricity and completeness of
W±(H,H0, J±) are, respectively, equivalent to

W±(H0,H, J ∗
±)W±(H,H0, J±)E0(�) = W±(H0,H0, J

∗
±J±)E0(�) = E0(�)

W±(H,H0, J±)W±(H0,H, J ∗
±)E(�) = W±(H,H, J±J ∗

±)E(�) = E(�).

The operator J ∗
±J± −ψ2(D) is compact since its principal symbol, equal to (η(x)− 1)ψ2(ξ),

is compactly supported in x. Together with the identity ψ2(D)E0(�) = E0(�) this leads to

W±(H0,H0, J
∗
±J±)E0(�) = W±(H0,H0, ψ

2(D)E0(�))

= W±(H0,H0, E0(�)) = E0(�).

Then, W±(H,H0, J±) are isometric. Asymptotic completeness goes on the same way
remarking also that E(�) − E0(�) is compact. �

Finally let us check that the wave operators constructed here coincide with the usual ones
constructed in [LT87].
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Proposition 2.4. Under assumptions (i) and (ii) of lemma 2.1 we have

W±(H,H0, J±) = W±(H,H0, Id)ψ(D)

for any choice of functions η and ψ .

Proof. The proof relies on the stationary phase formula applied to the integral

(J± e−itH0u)(x) =
∫

R3

ei〈x,ξ〉−it|ξ |2 j±(x, ξ)û(ξ)
dξ

(2π)3/2
.

Since the stationary points ξ0 = ξ0(t) of this integral are ξ0 = x/(2t) we get, for u ∈ S(R3),
the asymptotics

(J± e−itH0u)(x) = e∓idπ/4

(2t)d/2
ei|x|2/(4t)+i�±(x,x/(2t))û(x/(2t))η(x)ψ(x/(2t)) + r±(x, t)

where r±(x, t) tends to 0 in L2(R3) as t → ±∞. Now, by (2.4), we have �±(x, x/(2t)) = 0
for |x| � R so the phase factor exp(i�±(x, x/(2t))) is inessential and

lim
t→±∞(J± e−itH0 − e−itH0ψ(D))u = lim

t→±∞(η − 1) e−itH0ψ(D)u = 0

since η − 1 is H0-compact. In conclusion, the usual wave operators exist and coincide with
the wave operators of proposition 2.3. �

Remark 2.5. If a ‘short-range’ electromagnetic perturbation (V0, A0)

|V0(x)| + |A0(x)| + |divA0(x)| � C〈x〉−ρ ρ > 1 (2.10)

is added to the operator H, then all the results of this section remain true without changing
the definition (2.7) of identifications J±. The additional terms T̃ ± arising in the effective
perturbation T± are short-range. Since ρ > 1, and by theorem 2.2, they admit a factorization
into a product of H-smooth operators similar to (2.9)

T̃ ± = 〈x〉−ρ/2(〈x〉ρ/2T̃ ±〈x〉ρ/2)〈x〉−ρ/2.

3. The scattering matrix

In this section we consider the SM for the pair H,H0 and its stationary representation. We
do not give a proof of formula (1.7) (a complete justification can be found in [Yaf00]), but we
rewrite it into a sum of bounded operators on L2(S2) which gives its precise meaning to the
formula (1.7). Thus we can make the analysis of spectral properties and singularities of S(λ)

for all λ > 0.
Let us decompose formula (1.7) as follows

S(λ) = W(λ) + S1(λ) + S2(λ) (3.1)

S1(λ) = −2iπ	0(λ)J ∗
+ T−	∗

0(λ) (3.2)

S2(λ) = 2iπ	0(λ)T ∗
+ R(λ + i0)T−	∗

0(λ) (3.3)

with W(λ) and 	0(λ) given by (1.8) and (1.9). In the following three propositions we analyse
separately the terms W(λ), S1(λ) and S2(λ).

Proposition 3.1. The operator W(λ) defined by (1.8) is the operator of multiplication by the
function w(ω) defined on S2 by (1.10).
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Proof. First remark that the commutator

[H0, J
∗
+ J−] = T ∗

+ J− + J ∗
+ T−

admits a factorization into a sum of products of H0-smooth operators. Then the wave operator
W+(H0,H0, J

∗
+ J−) is well defined, commutes with H0 (by the interwinning property), and so

it reduces to multiplication by the operator-valued functionW(λ) in the spectral representation
of H0. Up to compact terms the operator J ∗

+ J− is the PDO with principal symbol exp(i�(x, ξ))

with

�(x, ξ) = �−(x, ξ) − �+(x, ξ)

taking into account (2.4) we obtain that � does not depend on x

�(x, ξ) =
∫ ϕx

ϕ−ξ

a(ϕ) dϕ −
∫ ϕx

ϕξ

a(ϕ) dϕ =
∫ ϕξ

ϕ−ξ

a(ϕ) dϕ =: �(ξ). (3.4)

Now since the operator exp(i�(D)) commutes with H0 we get

W+(H0,H0, J
∗
+ J−)E0(�) = s − lim

t→±∞ e−itH0J ∗
+ J− e−itH0E0(�)

= s − lim
t→±∞ e−itH0 ei�(D) e−itH0E0(�)

= ei�(D)E0(�).

The function � is obviously homogeneous of degree 0, by (3.4). Together with the obvious
identity ϕ−ω = π − ϕω this leads to exp(i�(

√
λω)) = exp(i�(ω)) = w(ω). Then in the

spectral representation where H0 is diagonal the operator W(λ) reduces to the operator of
multiplication by the function (1.10). �

Remark 3.2. From the physical point of view, �(x, ξ) is the circulation of the magnetic
potential A(x) along the ‘closed’ contour symbolized by dotted lines in figure 1. In particular,
the calculation of function � is independent of the gauge chosen for A(x). Thus the scheme
developed before applies to any magnetic potential Ã(x) satisfying curl (Ã) = curl (A);
however, the usual wave operators W±(H̃ ,H0), with H̃ = (D − Ã)2, should not exist if the
transversal gauge is not assumed.

Here we note that the kernel of W(λ) is w(ω)δ(ω,ω′) where δ denotes the Dirac
distribution on S2. Below we show that the kernel of S(λ) does not contain any other
singularity.

Proposition 3.3. The operator S1(λ), defined in (3.2), is an integral operator on S2 with
a smooth kernel s1(ω, ω′; λ) ∈ C∞(S2 × S2 × R∗

+). In particular, S1(λ) belongs to the
Hilbert–Schmidt class.

Proof. By equations (1.9), (2.6), the operator S1(λ) = −2iπ	0(λ)J ∗
+ T−	∗

0(λ) is the restriction
of a PDO on L2

(
R

3
ξ

)
with amplitude j+(x, ξ)t−(x, ξ ′) to the sphere |ξ |2 = |ξ ′|2 = λ, thus it is

an integral operator on L2(S2) with the kernel

s1(ω, ω′; λ) = − i
√

λ

8π2

∫
R3

ei
√

λ〈ω′−ω,x〉j+(x,
√

λω)t−(x,
√

λω′) dx. (3.5)

Since the amplitude j+(x,
√

λω)t−(x,
√

λω′) is compactly supported in x (due to the presence
of derivatives of function η defined in lemma 2.1) the integral above obviously converges.
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Differentiating expression (3.5) we get that s1(ω, ω′; λ) is a C∞-function. In particular
|s1(ω, ω′; λ)|2 is bounded and the Hilbert–Schmidt norm∫

S2

∫
S2

|s1(ω, ω′; λ)|2 dω dω′

of S1(λ) is finite. �

Proposition 3.4. The operator S2(λ), defined in (3.3), is an integral operator on S2 with a
smooth kernel s2(ω, ω′; λ) ∈ C∞(S2 × S2 × R∗

+). S2(λ) belongs to the Hilbert–Schmidt class.

Proof. Let ψ0(x, ξ) = exp(i〈ξ, x〉), then the kernel of the operator S2(λ) = 2iπ	0(λ)T ∗
+ R(λ+

i0)T−	∗
0(λ) is formally defined by the expression

s2(ω, ω′; λ) = i
√

λ

8π2
(T ∗

+ R(λ + i0)T−ψ0(·,
√

λω′), ψ0(·,
√

λω))L2(R3). (3.6)

Formula (3.6) is automatically justified if its right-hand side is a continuous function of
ω,ω′, λ. The derivatives ∂α

ω∂α′
ω′ ∂

m
λ s2(ω, ω′; λ) are given by a sum of terms of the form

(T ∗
+ Rn(λ + i0)T−〈x〉β ′

ψ0(·,
√

λω′), 〈x〉βψ0(·,
√

λω))L2(R3)

= (〈x〉−nRn(λ + i0)〈x〉−nQ−〈x〉−2ψ0(·,
√

λω′),Q+〈x〉−2ψ0(·,
√

λω))L2(R3)

with Q+ = 〈x〉nT+〈x〉β+2,Q− = 〈x〉nT−〈x〉β ′+2 ∈ Sm for all m ∈ Z and |α| + |α′| + m =
|β| + |β ′| + n. Since the operators Q± and 〈x〉−nRn(λ + i0)〈x〉−n are bounded on L2(R3)

(by theorem 2.2) and taking into account that 〈x〉−2ψ0(·, ξ) ∈ L2(R3), those expressions
are correctly defined and bounded. Finally, since ψ0(·,

√
λω), 〈x〉−nRn(λ + i0)〈x〉−n are

continuous in λ and ω, we have shown that s2(ω, ω′; λ) is a C∞-function. In particular
|s2(ω, ω′; λ)|2 is bounded and the Hilbert–Schmidt norm of S2(λ) is finite. �

Combining propositions 3.1, 3.3 and 3.4 we obtain

Theorem 3.5. Let H be the operator (1.5) with potential (1.1), S(λ) be the SM for the pair
H,H0 = −� and W(λ) be the operator of multiplication on S2 by the function w defined
in (1.10). Then the operator S(λ) − W(λ) has an infinitely-smooth kernel, in particular it
belongs to the Hilbert–Schmidt class.

We can now prove the two essential results on spectral properties of the SM for the pair
H,H0.

Theorem 3.6. Let H be the operator (1.5) with potential (1.1) and S(λ) be the SM for the pair
H,H0 = −�, then the essential spectrum of S(λ) is given by (1.11).

Proof. Since W(λ) is the operator of multiplication by w, its (continuous) spectrum coincides
with the range of the function w. Since the function a in (1.1) is positive and taking into account
relation (1.4) the range of the function (3.4) equals the interval [−φ, φ] and the spectrum of
W(λ) is the image of this interval by the function υ �→ exp(iυ). Finally, since S(λ) − W(λ)

is Hilbert–Schmidt, and also compact, thanks to Weyl theorem the essential spectrum of S(λ)

coincides with the essential spectrum of W(λ) that is (1.11). �

Theorem 3.7. Let H be the operator (1.5) with potential (1.1) and S(λ) be the SM for the pair
H,H0 = −�, then the total scattering cross-section tot(ω0; λ) defined by (1.12) and (1.13))
is finite for any incident direction ω0.

Proof. The kernel of the principal part W(λ) is w(ω)δ(ω,ω′) where δ denotes the Dirac
distribution on S2. In particular, its support is concentrated on the diagonal ω = ω′. Off the,
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diagonal the kernel of S(λ) reduces to the sum s1(ω, ω′; λ) + s2(ω, ω′; λ). Since s1 and s2 are
infinitly smooth functions the integral (1.13) converges and the total scattering cross-section
is finite for all ω0. �

Let us make some comments on the nature of the spectrum of the operatorsW(λ) and S(λ).
Since a ∈ C∞

0 (0, π) the function w is constant in a conical neighbourhood of the x3 axis (see
figure 1); thus any function u ∈ L2(Sd−1) supported in a small enough neighbourhood of the
point (0, 0, 1) (respectively (0, 0,−1)) is an eigenfunction of the operator W(λ) associated
with the eigenvalue exp(−iφ) (respectively exp(iφ)). Consequently, the spectrum of the
operator W(λ) is absolutely continuous on the arc [exp(iφ), exp(−iφ)] (contained in the unit
circle) except at the points exp(±iφ) which are eigenvalues of infinite multiplicity. Note that if
φ = nπ, n ∈ N∗, then the spectrum of W(λ) covers the unit circle and is absolutely continuous
except for the eigenvalue (−1)n. Now, considering S(λ) as a compact perturbation of W(λ),
the eigenvalues exp(±iφ) would split into a discrete set of eigenvalues accumulating at the
points exp(±iφ) (possibly equal). We can also note that if φ � π then the spectrum of S(λ)

covers the unit circle.

Remark 3.8. The result of theorem 3.7 is preserved under short-range perturbations (V0, A0)

if we suppose that (2.10) is satisfied for some ρ > 3.

4. The Aharonov–Bohm effect in dimension 3

Finally, we want to make some remarks on the Aharonov–Bohm effect. Since the three-
dimensional example of magnetic field treated here is compactly supported it is somewhat
natural to compare our results with those obtained in the two-dimensional case. Let the
Aharonov–Bohm Hamiltonian be the operator HAB = (D − AAB(x))2, on L2(R2), with the
magnetic potential

AAB(x) = a(θx)
(−x2, x1)

|x|2 |x| � R > 0 (4.1)

where a ∈ C∞(R) is a 2π-periodic function of the polar angle θx associated with x = (x1, x2).
The family of potentials satisfying (4.1) includes all compactly supported magnetic fields in
dimension 2. For potential (4.1) an analysis, similar to that made here, was developed in
[RY02a]. With the notation

φAB =
∫ 2π

0
a(ϑ) dϑ f (θ) =

∫ θ+π

θ

a(ϑ) dϑ

it is shown that for SAB(λ), the SM associated with the pair HAB,H0, we have that

σess(SAB(λ)) = exp(if (R)) ∪ exp(−if (R)) (4.2)

and the differential scattering cross-section admits the asymptotic

diff(ω, ω0; λ) = 1

2π
√

λ

sin2(φAB/2)

sin2(θ/2)
+ O

(
ln(θ)

θ

)
(4.3)

as ω → ω0, with |ω − ω0| = 2 sin(θ/2). Equations (4.2) and (4.3) generalize the results
obtained by various authors (see [Rui83]) for the radial potential (4.1) with a constant function
a = φAB/(2π):

σ(SAB(λ)) = σpp(SAB(λ)) = {eiφAB/2, e−iφAB/2}
and

AB
diff (ω, ω0; λ) = 1

2π
√

λ

sin2(φAB/2)

sin2(θ/2)
.
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If we compare (1.11) with (4.2) we remark that both SM have intermediary spectral properties
between the general cases of short and long-range potentials where, respectively, the essential
spectrum reduces to {1} or covers the whole unit circle (see [RY02b]). From (4.3) we see
that in dimension 2 the total scattering cross-section is infinite except if the magnetic flux
φAB ∈ 2πZ, in contrast, for potential (1.1), in dimension 3, this situation does not appear.

In contrast to the two-dimensional case, only a few authors have been interested in the
three-dimensional case [Tam95, BR00], so the potential (1.1) can be regarded as an interesting
example. Since the family of potentials satisfying (1.1) does not contain all compactly
supported magnetic fields in dimension 3 we could not exclude the existence of such fields
with infinite total cross-section, but it seems that the situation described in this paper is very
general. Indeed, let us consider a magnetic potential A obtained from an arbitrary compactly
supported magnetic field, that is

curl A(x) = 0 ⇐⇒ A(x) = ∇�(x) (4.4)

for large |x| and some regular function �. It is quite plausible that we can choose � = �±,
the solutions of the eikonal equation (2.2), as in the case of potential (1.1). If this conjecture
is verified then we can generalize the scheme developed here to all potentials satisfying (4.4).
As in section 2 we can define the wave operators of lemma 2.1 which coincide with the usual
ones and thus are complete. Similarly the results of section 3 would be generalized. Remark
that the results of propositions 3.3 and 3.4 do not depend on the phases �± and so they hold
for arbitrary potential A. Thus all the singularities of the SM are contained in the term W(λ)

defined by (1.8). As shown in the proof of proposition 3.1, the singularities of W(λ) reduce to
the Dirac singularity if the function �(x, ξ) = �−(x, ξ) − �+(x, ξ) is independent of x (for
large |x|). This fact follows from the initial conjecture since

∇x�(x, ξ) = ∇x�−(x, ξ) − ∇x�+(x, ξ) = A(x) − A(x) = 0.

Then for any compactly supported magnetic field the SM will reduce to multiplication by
the function exp(i�(ω)), up to a C∞-kernel operator. So in contrast to the two-dimensional
case, the total scattering cross section will always be finite in dimension 3. A final argument
for this conjecture can be found in [Yaf02]. In this paper Yafaev has shown a result similar to
the one conjectured here, but for short-range magnetic potentials, that the high-energy limit
of the SM is the operator of multiplication by exp

(
i
∫

R
〈A(tω), ω〉 dt

)
.
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